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Abstract 

A new scheme for the matrix representation of high- 
energy electron diffraction by a crystal is developed. 
The theory consists of the matrix formula of two- 
dimensional Bloch waves and that of three- 
dimensional ones combined with the layer-doubling 
method. The new method reduces computing time to 
about one-tenth of that required for two-dimensional 
Bloch waves alone and makes it possible to include 
the surface effect accurately. 

1. Introduction 

Since Bethe (1928) developed a dynamical theory of 
electron diffraction, the problems of dynamical scat- 
tering have been studied by many researchers 
(Fujimoto, 1959; Cowley & Moodie, 1957; Van 
Dyck, 1980; Watanabe, Kikuchi, Hiratsuka & 
Yamaguchi, 1990). Up to the present, all theoretical 
approaches may be divided into two groups: those 
based on the layer-by-layer scheme and those based 
on the eigenvalue problem. 

The first approach has its origin in Darwin's 
(1914) theory of X-ray diffraction and has found 
powerful extensions to the multislice method for 
high-energy electrons in the transmission case 
(Cowley & Moodie, 1957; Ishizuka & Uyeda, 1977; 
Wang, 1990), in low-energy electron diffraction 
calculations using both plane waves and spherical 
waves (Pendry, 1974) and in reflection high-energy 
electron diffraction (RHEED) calculations using 
two-dimensional Bloch waves. In particular, the 
layer-by-layer method of two-dimensional Bloch 
waves can be seen properly in high-resolution 
transmission-electron-microscopy (HRTEM) simu- 
lations as well as in RHEED ones because the 
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nonperiodic variations of the potential in the surface- 
normal direction can be taken into account. How- 
ever, the layer-by-layer method using two- 
dimensional Bloch waves requires much computing 
time compared with Bethe's eigenvalue and the 
multislice methods. 

Peng & Whelan (1990) proposed a matrix formula 
based on three-dimensional Bloch waves for both 
transmission and reflection cases. However, in a 
qualitative sense, it is not completely satisfactory 
because it is assumed that the triply periodic 
potential field ceases suddenly at crystal-vacuum or 
crystal-crystal interface planes. 

In this paper, a new scheme for the matrix formula 
for the transmission case that consists of two- and 
three-dimensional Bloch-wave theories is proposed 
so as to accurately incorporate the surface effect and 
defects. 

2. Two-dimensional Bloch wave 

On the basis of two-dimensional periodicity, 
scattering-matrix techniques for solving coupled 
second-order differential equations have been pro- 
posed by many authors (Maksym & Beeby, 1981; 
Ichimiya, 1983; Zhao, Poon & Tong, 1988; Nagano, 
1990). With the introduction of the column vector 
combining Fourier coefficients of the wave function 
and its derivatives, the Schrrdinger equation can be 
written in matrix form as 

d-~ ( 0  ' ) ~ - ,  d-~- W 0 (1) 

where i is a unit matrix, 0 is a zero matrix and W is 
defined as 

__ k 2 { W}g,,g.,. = (2m/h 2) Vg,._ g..~ gzrg,,g.E,. (2) 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1994 



738 N E W  n-BEAM D Y N A M I C A L  C A L C U L A T I O N S  

V ,  is a two-dimensional Fourier coefficient of the 
I I .  

crystal potential, kg z is the z component of the 
diffracted wave vector and 8g o, is the Kronecker &. 

[Isll 

The solution of (1) can be obtained by an 
exponential series for small slice thickness h 
(Magnus, 1954): 

4,(n) = M.4,(n - 1) 

( h O h l ) - ~ ( n - 1 )  = exp ~-7 6 

= M,,M,,_,...Mz4,(1) 

= B4"(1). (3) 

From (3) and upper and lower boundary condi- 
tions, transmission- and reflection-coefficient 
matrices are expressed by Nagano (1990) as 

T s- = 2 [ ( 8 1 1 -  i8,2 K) + iK-1(821- i822K)] -1,  (4) 

R ~- = [ ( B ~ -  iB~2K)- iK-~(B2~- iB2zK)] 

× [ ( B , , -  iB~2K) + iK- '(B2~- iB22K)]-1, (5) 

T ~+ = 2[(bx~ + ib~zK)- iK-l(b2~ + ibx2K)] -1, (6) 

R ~+ = [(b~l + ib~zK)+ iK-~(bzt + ib22K)] 

× [(bt~ + ib~2K)- iK-l(bzl + ibzzK)] -~ (7) 

with K =  k. 8o _. and Br and be. being submatrices 
s ~ .  s l l s  ii .[/ 

of B and B - ' ,  respectively. The superscript s refers to 
surface. These transmission and reflection matrices 
can also be evaluated by other scattering-matix 
methods (Maksym & Beeby, 1981; Ichimiya, 1983; 
Zhao et al., 1988). 

3. Three-dimensional Bloch wave 

In three-dimensional periodicity, Bethe's (1928) fun- 
damental equation is given by 

( K 2 -  k2)Cg-~ 2 Vg-hCh ~- O (8) 
h 

with 

kg = (kll + gll, kz + gz + Y). (9) 

is the conventional Ampassung and K is the wave 
vector of the incident electron waves in the crystal. 
In the Laue case, (8) can be reduced to a generalized 
eigenvalue problem (Kim & Sheinin, 1982) 

{2kzy -  [K 2 - (kll + glj) 2 - k~}Cg,-  Z V g [ i - h l l C i  hll 
hll ;~  gll  

=0 (10) 

where. C ig, is the gll element of the eigenvector of the 
ith elgenvalue. The electron wave function with gll 
and its derivative can be written as 

~g.,(z) = Z. C~, exp [i(k~ + 7J)z]a j (1 l) 
J 

and 
?/ 

dq~g,,(z)/dz = ZC j i(k. + y] + gz)exp [i(k2 + y:)z]aL • II 
J 

(12) 

In matrix notation, (11) and (12) can be written as 

~g,,(z) = C(z)F (z)A (13) 

and 

dqg,/dz = C(z)Z F(z)A. (14) 

C-is the matrix of C~: 7 and T are the diagonal 
• . , ] 

matrices consisting of i(k2 + yJ)z and exp[i(kz + y:)z] 
and 3- is  the column matrix of az. With the same 
column vector 4, combining Fourier coefficients ~Og,, 
and its derivatives, and with the same boundary 
condition at z = zA and z = zB as above, the Bloch- 
wave amplitude vector A is eliminated from (13) and 
(14) as follows: 

4"(z8) = M 4"(zA). (15) 

Therefore, the reflection and transmission matrices 
T B-, T B-, T B+ and R B+ can be obtained in the 
same forms as in the two-dimensional Bloch-wave 
case. The reflection matrix R B- is identical to that of 
Peng & Whelan (1990). 

4. Layer-doubling method 

The scattering matrix for the combined system of 
two slabs can be considered as shown in Fig. 1. 
Following the layer-doubling scheme, transmission 
and reflection matrices are given by 

R As- =R A- +TA+RB-(I  - R A + R B - ) - I T  A-, (16) 

T an- = TB-(I  - RA+RB-)-1T A-, (17) 

R AB+ = R  B+ + T B - R A - ( I - R B - R A + ) - I T  B+, (18) 

T AS+ = TA+(I - RB-RA+)-IT B+. (19) 

- -  AB- 
R 

i~A" 

~AB- 

Fig. 1. Schematic view of the layer-doubling method. 
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Since this calculation scheme is naturally taken 
into the layer-doubling method, computing time is 
reduced considerably as follows. As shown in Fig. 2, 
a specimen for the Laue case is divided into three 
regions. In regions I and II, the crystal potential is 
nonperiodic along the z direction but in region II the 
crystal potential is periodic. Then, treating I and III 
as a set, many scattering matrices need to be calcu- 
lated. However, in region II, only one matrix is 
required. Similar treatment using the layer-doubling 
method was suggested by Maksym (1985). 

Fig. 2. Schematic view of the crystal system. 

5. Results 

Compared to the Bethe method, the validity of the 
present method is discussed for n-beam dynamical 
calculations for copper at 100 and 300 kV excluding 
and including a surface effect. The orientation was 
fixed at [001]. The crystal potentials were constructed 
from superposing fred atoms (Doyle & Turner, 
1967). 

5.1. The validity of the present method 

In order to illustrate its validity, the present 
method has been tested by n-beam dynamical calcu- 
lations with the same crystal potential as the Beth 
method, which stops suddenly at the crystal-vacuum 
interface. For the Bethe method, an 11 x 11 beam 
number is adopted, which makes the calculations for 
this material converge. The present method also uses 
an 11 x 11 beam number and an a/128 slice 
thickness. Fig. 3 shows plots of 000 and 200 beam 
intensities against thickness. The present method is 
in good agreement with Bethe method whether the 
accelerating voltage is 100 or 300 kV. The computing 
time at z = 20a is about one-tenth of that for a 
two-dimensional Bloch wave only. 

5.2. The effect of surface 

As for the first step, a surface effect is discussed 
using a crystal potential that is simply reconstructed 
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Fig. 3. Beam intensities of the 000 and 200 reflections for [001] n-beam dynamical calculations excluding a surface effect for copper at 
100 and 300 kV. 
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from an ideal superslab of neutral atoms, the surface 
relaxation and reconstruction being thereby ignored. 
The planar average potentials for the Bethe method 
and for an 1 l-layer film with the present method are 
plotted as a function of z coordinate perpendicular 
to the surface, as shown in Fig. 4. The potential of 
the last atomic layer is very similar to that of the 
bulk and the surface potential leaks out into the 
vacuum over the dotted line. 

The parameters used in the present method are the 
same as those above. Fig. 5 shows the thickness 
variation of the 000 and 200 beam intensities. The 
effect of the surface is a relatively small difference in 
the main-beam intensities almost independent of the 

0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 

Cu 
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Fig. 4. The planar average potentials for the Bethe method and an 
1 l-layer film by the present method. 

accelerating voltage. Although the effect of this ideal 
surface seems to be relatively small, the surface effect 
is one of the important factors for accurate HRTEM 
image simulations. The present method appears to be 
useful not only for accurate HRTEM simulations of 
a wide variety of materials but also for the study of 
properties such as surface polarity and recon- 
struction. A more detailed understanding of the sur- 
face effect is possible by making use of real surface 
structure without any serious problems. 

6. Concluding remarks 

A general scheme has been proposed for the dy- 
namical theory of fast electron diffraction on the 
basis of two-dimensional and three-dimensional 
Bloch waves that are combined with the layer- 
doubling method. Reduction of computing time and 
required memory is achieved in comparison with the 
two-dimensional Bloch-wave method. This method is 
applicable not only to perfect bulk crystals but also 
to the ideal surface. It can readily include surface 
relaxation or reconstruction without any serious 
complications. Furthermore, it may be applicable to 
simulations of defects using the periodic continua- 
tion approximation (Fields & Cowley, 1978). 

The effect of anomalous absorption resulting from 
the depletion of the elastic wave by inelastic scat- 
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Fig. 5. Beam intensities of the 000 and 200 reflections for [001] n-beam dynamical calculations including a surface effect for copper at 100 
and 300 kV. 
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tering can be easily taken into account by adding 
additional complex contributions Vg (z) and Vg to (2) 
and (8) (Yoshioka, 1957; Nagano, 1~90) in two- and 
three-dimensional Bloch-wave theories, respectively. 
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Abstract 

The statistical analysis of data in the form of orienta- 
tions is a relatively new discipline and results from 
the literature on this subject are not yet widely 
known outside the statistics community. This paper 
provides an introduction to and the key references 
for statistical methods for analysing orientation data. 
More specifically, the problem of estimating an 
unknown orientation is considered and results on the 
precision of such an estimated orientation are 
described. The calculation of average orientation and 
dispersion parameters for a sample of orientations is 
also considered. Finally, procedures for generating 
and testing for random orientations are described. 
The methodology is illustrated with crystal orienta- 
tion data obtained from the analysis of electron 
back-scattering patterns. 

1. Introduction 

Orientation data arise naturally in many scientific 
areas, notably in the earth sciences, astronomy and 
biology. Within the field of materials science, for 
example, the development of techniques for meas- 
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uring local lattice orientations in polycrystalline 
materials has opened up the way for wholly new 
types of investigations. These techniques, especially 
the electron back-scattering pattern (EBSP) tech- 
nique in scanning electron microscopy and the 
Kikuchi diffraction technique in transmission elec- 
tron microscopy, have recently been a major subject 
at several conferences and workshops (Bunge, 1993, 
1994). These modern techniques for measuring local 
lattice orientations are convenient and rapid in use 
and the EBSP technique has recently even been fully 
automated (Wright & Adams, 1992), thus allowing 
large numbers of orientation data to be collected. 
Statistical methods for analysing such data, however, 
have only very rarely been applied. As a result of 
this, for example, little is known about the precision 
by which crystal orientations can be determined. 
Another example of the application of orientation 
statistics is when the average and dispersion of a 
sample of orientations is to be determined. For 
example, it is demonstrated in the final section of this 
paper that using the arithmetic mean of Euler angles 
as a measure of an average orientation cannot gen- 
erally be recommended. 
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